
Journal of Approximation Theory 106, 2�57 (2000)

The Theory of Best Approximation of Functions

V. L. Goncharov

Translated by Olga Holtz and Vladimir Yegorov

Communicated by Carl de Boor and Allan Pinkus

Received February 21, 2000; accepted February 21, 2000;
published online August 30, 2000

1. APPROXIMATING FORMUL2 BY PONCELET

The history of mathematics testifies to the fact that the main idea of a
theory often is more or less clearly formulated, though sometimes only in
passing, by the predecessors of the mathematician whose name later
becomes inseparably associated with it.

The authenticity of the approximation method due to Chebyshev can be
thought of as well established. This makes it all the more interesting to
investigate the source of the impetus that led our genius fellow countryman
to his brilliant and deep constructions.

There is nothing mysterious about it. Chebyshev himself tells us, in a
perfectly clear way, about the purpose of his research in approximation
theory, and names the person whose results were his starting point. He
states: ``From among the many research subjects that I encountered in
studying and comparing different mechanisms of motion transfer, especially
in a steam engine, where efficiency and reliability depend much on the way
the power of steam is transferred, I was especially occupied by the theory
of mechanisms known as parallelograms... While trying to derive the rules
for constructing specific parallelograms directly from their properties, I
encountered problems in analysis that were not well known then. Every-
thing done in this area is due to Mr. Poncelet, a member of the Paris
Academy who is well known in applied mechanics. His formul$ are widely
used in computing the frictiona in mechanisms...'' [6]. And in a different
place [1]: ``With respect to the approximation method just mentioned, we
are only equipped with the findings of Poncelet, who gave linear formul$
often used for approximating the following three expressions:

- x2+ y2, - x2& y2, - x2+ y2+z2...''
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a Lit.: useless resistance.



It is not the applications of Chebyshev's theory that are of interest to us
at the moment, but rather its genesis. The results of Poncelet just men-
tioned are stated (other than in lithographed lecture notes not available to
us) in his work on approximate radical values published in Crelle's Journal
in 1835 [64]. The results are not likely to be known to our readers, and
it therefore seems appropriate to give a feeling for them here by presenting
the following simplest example.

In trying to simplify the computation of the efficiency of certain
mechanisms (as reported by Re� sal), Poncelet (who, at the time, was serving
as a captain and teaching in the School of Engineering and Artillery in
Metz) poses the problem of finding an approximating formula for - a2+b2

of the form

- a2+b2
t:a+;b

in such a way that the absolute value of the relative error

:a+;b

- a2+b2
&1,

which obviously depends only on the ratio a
b , have the smallest possible

maximum over all values of a and b satisfying a
b�k (where k is a positive

given number). In other words, using modern notation, one must choose
: and ; so that the expression

max
x�k

|r(x)|,

where

r(x)=
:x+;

- x2+1
&1,

attains its minimum. The function r(x) is increasing for x< :
; , and is

decreasing for x> :
; . Therefore the maximum, which we will denote by

F(:, ;), is equal to the largest of the three numbers |r(k)|, |r( :
;)|, and

|r(�)|. Let

k=ctg |,

:k+;

- k2+1
=: cos |+; sin |=:$,

&:+;k

- k2+1
=&: sin |+; cos |=;$.
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It then turns out that the values of the continuous function F(:, ;) on the
domains

(A) ;2>4(1&:), ;$2>4(1&:$),

(B) ;2<4(1&:), :$>:,

(C) ;$2<4(1&:$), :$<:,

are equal, respectively, to

r \:
;+=- :2+;2&1, &r(�)=1&:, &r(k)=1&:$.

The latter quantities, as is obvious from geometric considerations,1 are
minimized at the point common to the boundaries of the three domains,
namely at

:=
cos (|�2)

cos2 (|�4)
=

2

1+- 2(k2+1)&2k - k2+1
,

;=
sin (|�2)

cos2 (|�4)
=

2(- k2+1&1)

1+- 2(k2+1)&2k - k2+1
.

The relative error = is the value of F(:, ;) at this point,

==1&:=1&:$=- :2+;2&1,

given by the formula

==tg2 \ |
4 + =

- 2(k2+1)&2k - k2+1&1

- 2(k2+1)&2k - k2+1+1
. (2)

Poncelet presents the following table:
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1 Let us view the parameters : and ; as Cartesian coordinates in a plane. Then the whole
plane O:; is divided into three domains, by the line :=:$, by the parabola ;2=4(1&:), and
by the congruent parabola obtained by rotating the first one about the focus O by the angle
|. In the domain (A), which is outside of both parabolas, the function F(:, ;) is equal to
- :2+;2&1, and it attains its smallest value at the boundary point P closest to the origin.
In the domain (B), which is inside of the first parabola and to the same side from the line
:=:$ as the semi-axis :$, the function F(:, ;) is equal to 1&:, and, therefore, attains its maxi-
mum, again, at the point P. The same is true for the domain (C). It is worth noting that the
analytic expressions defining the function F(:, ;) in the different domains are such that in
each case the minimum is attained on the boundary, at the point common to the three
domains.



a and b k : ; =

arbitrary 0 0.82840 0.82240 0.17160 or 1
6

a>b 1 0.96046 0.39783 0.03954 or 1
25

a>2b 2 0.98592 0.23270 0.10408 or 1
71

a>3b 3 0.99350 0.16123 0.00650 or 1
154

a>4b 4 0.99625 0.12260 0.00375 or 1
266

a>5b 5 0.99757 0.09878 0.00243 or 1
417

a>6b 6 0.99826 0.08261 0.00174 or 1
589

a>7b 7 0.99875 0.07098 0.00125 or 1
800

a>8b 8 0.99905 0.06220 0.00095 or 1
1049

a>9b 9 0.99930 0.05535 0.00070 or 1
1428

a>10b 10 0.99935 0.04984 0.00065 or 1
1538

Poncelet solves the same problem for - a2&b2 by a similar method, where
he introduces the restriction k� a

b�k$. As concerns the square root of the
sum of three squares - a2+b2+c2, he reduces the problem to the first one
as follows:

- a2+b2+c2=- a2+(- b2+c2)2
t:a+; - b2+c2

t:a+;(:$b+;$c)

=:a+:$;b+;;$c.

Note that, apart from the work of several French authors [50, 65], a
more detailed solution of the last problem under the restriction of the form
k� a

b�k$ was obtained much later, in the spirit of Poncelet, by Markov
[59].

The following quotation from Poncelet's work is interesting in two ways.
First, it tells us that Poncelet is following even earlier authors in posing the
problem. Second, in somewhat vague and cautious terms, it suggests
possible generalizations and outlines the path followed later by Chebyshev.
In connection with the first of the problems considered, Poncelet says the
following:

The method that allowed us to obtain the general expressions for :, ;, and = in
terms of k and |, can, obviously, be applied to any function of two variables a and
b, more or less complex, given that the goal is to approximate it by a linear expres-
sion of the form :a+;b+#, provided that the formula for the relative error that
results from this substitution takes on its maximum or minimum in the range of
values of a and b that are being considered. In some cases, the method might also
be applied to functions of any number of variables a, b, c, d, etc., if one starts with
arguments analogous to those by Laplace and Fourier that allowed them to deter-
mine the values of the unknown variables from a system of equations so that the
absolute value of the maximum error resulting from substituting experimental data
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for the unknowns is minimized.2 Indeed, the whole difficulty is to find, in each par-
ticular case, analytic expressions for the extrema of the possible error; to equate
their absolute values; and it then becomes possible (provided that the number of
equations thus obtained is equal to the number of unknowns) to calculate the
values of the variables that satisfy the required conditions.

And further:

These remarks show quite clearly that the method can be applied under very
general circumstances. It allows one to replace (provided that the replacement is
possible at all) any complex function of any number of variables by another func-
tion that is simpler and more suitable for computations or analytical transforma-
tions. The example we have considered gives one a feeling for the machinery that
should be applied in each particular case, as well as for the advantages of our
procedure compared to the traditional methods��decomposing in a series or in a
continued fraction.

Even though the problems considered by Poncelet are modest, it can be
seen from his words that this distinguished researcher had the foresight to
appreciate the scientific and practical importance of his principle. Choose
the parameter values in such a way that the maximum of the error is
minimized.

2. THE MEMOIR ``THE� ORIE DES ME� CANISMES CONNUS
SOUS LE NOM DE PARALLE� LOGRAMMES''

The first of the two major memoirs that contain Chebyshev's research on
the best approximation of functions was presented to the Academy of
Sciences in January 1853. This is soon after Chebyshev had returned from
a long trip abroad, where he visited the most important European scientific
and industrial centers, and where he paid equal attention to studying fac-
tories, plants, and different kinds of ``interesting subjects in applied
mechanics,'' as well as making personal contacts and ``conversing'' with
famous ``geometers,'' mainly French ones.

The name of Poncelet is not among those mentioned by Chebyshev in
his report but, undoubtedly, during his stay in Paris or in Metz, Chebyshev
was in touch with the circle of his ideas. It is difficult to decide whether he
had considered problems of that kind before his trip abroad. In any case,
it is significant that all his manuscripts written in the preceding period were
devoted to pure mathematics (number theory, integration, probability),
while, after this trip, Chebyshev showed a lively interest in practical
applications of mathematical problems. In particular, if the actual words of
the author are to be taken literally, Chebyshev had undertaken his research
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e� quations'' by Fourier, Part 1, p. 81.



to advance Watt's parallelogram theory, though it is mentioned that the
applications of the general formula that were obtained ``are not limited to
investigating these mechanisms,'' and that ``applied mechanics and other
applied sciences have a whole range of questions for which these formul$
are necessary.'' Hence appeared a treatise entitled ``The theory of
mechanisms known by the name of parallelograms,'' which was published
in the ``Notes of the Academy of Sciences'' in French.

Chebyshev writes: ``Because of the lack of time and the breadth of the
subject, I was only able to finish the first part of my note.'' The structure
of this part is roughly the following. After an extensive introduction of an
exclusively technical nature, which illustrated the drawbacks (inaccuracy of
motion) of Watt's mechanisms, Chebyshev ``ex abrupto'' turns to solving a
purely mathematical problem, which we are going to consider now, and
only his closing words bring us back to the problem that he initially
claimed to be concerned with: ``In the following paragraphs, we shall
illustrate the application of the derived formul$ for finding the parameters
of the parallelograms that satisfy the conditions that make the precision of
motion best possible.'' Where are those following paragraphs? There is no
sign of them. Apparently, the initial plan was not implemented, and the
incompatible pieces broke apart. There further appeared, on one hand, the
excellent self-contained memoir ``Sur les questions des minima,'' which con-
tains the basics of the mathematical theory of approximation and makes
``Theory of mechanisms'' look like a mere draft, and, on the other hand, a
number of later articles and notes on hinged mechanisms, which were of so
much interest to Chebyshev in the second half of his scientific activity.3

When analyzing the content of the memoir [1], one notices that, even
in its purely mathematical part, this treatise is somewhat unbalanced. In
passing, Chebyshev establishes here a series of mathematical facts, and
states results of major importance, which are undoubtedly fundamental to
his theory and contain the source of its further development. Explicitly,
however, the subject of the paper is a rather technical question of limited
importance, though difficult to solve, requiring cumbersome computations
and a great deal of mathematical insight. The author himself says that this
question is motivated by applications, but does not go into details. Com-
mon sense and caution make one act in this way when the authenticity of
the results obtained is in doubt, or when the results themselves are at risk
of not being appreciated by biased arbiters.

By the way, the memoir [1] is apparently the first to contain a formula-
tion of the general problem. Given a continuous function f, find a polyno-
mial of a given degree such that ``the maximum of its deviation from f (x)
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in a given interval is smaller than that of all other polynomials of the same
degree'' [1]. In other words, given an interval [a, b], one has to find the
coefficients pi of the n th degree polynomial

P(x)= p0xn+ p1xn&1+ } } } + pn

so that the expression

max
a�x�b

| f (x)&P(x)|,

which depends on the coefficients pi , is minimized.
How to find the approximating polynomial P(x)? The difference

R(x)= f (x)&P(x),

``as is known'' (according to Chebyshev), necessarily has the following
property: ``the set of its numerical4 maxima and minima in the given inter-
val contains the same number at least n+2 times.'' In other words, if
|R(x)|�L for a�x�b, and there exist points x in which |R(x)|=L (the
``deviation points''), then the number of such points is at least n+2 (the
latter number is one more than the number of parameters p i). Neither here
nor in any other place does Chebyshev discuss the existence or the unique-
ness of the polynomial P(x), because in all particular cases he is able to
find the unique solution. Similarly, there is no statement made about the
number of points of positive deviation R(x)=+L versus the number of
points of negative deviation R(x)=&L, nor about their relative positioning.

Chebyshev does not give a proof of his statement, so there remains the
question of whether the property mentioned was formulated by someone
else (in France, in Poncelet' school, perhaps, during a conversation) or was
established by Chebyshev himself, and, due to its apparent simplicity, was
considered as not deserving a proof. The words ``is known'' can be under-
stood either way.

In addition, while tacitly assuming that the function f (x) is differentiable,
Chebyshev takes up the problem of finding the polynomial P(x). At the
points of deviation xi , besides the conditions

R2(xi)=L2,

the equality

(xi&a)(xi&b) R$(xi)=0

8 V. L. GONCHAROV
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holds, and therefore there are at least 2n+4 equations, from which,
theoretically speaking, the points of deviation xi , the coefficients pi , and,
finally, the deviation L itself can be determined. If the system leads to
several polynomials rather than to a single one, then Chebyshev, according
to his way of thinking, would select the correct polynomial by direct
comparison.

Actually, the particular cases considered are such that either solving the
system of algebraic equations can be avoided, or, at least, its order can be
reduced. For simplicity, set a=&1 and b=+1. In this particular memoir,
we are concerned, in fact, with only the one particular case, where

f (x)=xn+ p ( p is an integer �1).

It follows on algebraic grounds that, in this case, the fraction

R2(x)&L2

R$2(x)

can be reduced to

(x2&1) A(x)
B2(x)

,

where A(x) and B(x) are polynomials of degree 2( p&1) and p&1,
respectively. In this way, Chebyshev arrives at the differential equation

dR

- R2&L2
=

B(x) dx

- (x2&1) A(x)
. (3)

If p=1, then A(x) and B(x) are constants, so integrating the equation,
using the initial conditions, and comparing the leading coefficients gives the
result

R(x)=
1
2n Tn+1(x),

where

Tn(x)= 1
2 [(x+- x2&1)n+(x&- x2&1)n]=cos n arc cos x.5 (4)
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So, the sought-for polynomial has the form

P(x)=xn+1&
1
2n Tn+1(x).

Simultaneously, the following problem is solved: Find a polynomial of
degree n with a given coefficient _0 of xn that deviates least from zero on
the interval [&1, +1].

This polynomial is

_0

2n&1 Tn(x).

The case p=2 is essentially the same, because

R(x)=
1

2n+1 Tn+2(x).

As far as the case p�3 is concerned, without solving the problem com-
pletely, Chebyshev points to a way of doing so, while ingeniously using the
results of his 1847 dissertation pro venia legendi ``On integration by means
of logarithms'' [14]. While deriving from (3) that the integral

|
B(x) dx

- (x2&1) A(x)

can be represented in the form

1

2
ln

R(x)+- R2(x)&L2

R(x)&- R2(x)&L2
,

he concludes that the polynomial A(x) must satisfy p&1 conditions. The
same number of conditions comes from the fact that the polynomial R(x)
does not contain the powers xn+1, ..., xn+ p&1. All these conditions, are,
theoretically speaking, sufficient for computing R(x).

The above-mentioned results are undoubtedly of major importance,
however they look somewhat like a by-product in the memoir [1]. Let us
now turn to the problem that Chebyshev describes as its major subject.6

Let us assume, as does Chebyshev, that the given function f (x) is
analytic at the point x=a, that is, it can be represented by its Taylor series

f (x)=:
�

0

km(x&a)m

10 V. L. GONCHAROV
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in some neighborhood of that point. Let p(x, h) be a polynomial of degree
n that approximates f (x) best in the sense of Chebyshev on the interval
a&h�x�a+h. Given the coefficients km , one has to find a power series
expansion of the polynomial p(x, h) in powers of h.

If we set

F(x)# f (a+x)=:
�

0

kmxm, P(x, h)= p(a+hx, h),

then the problem can be reformulated in the following way. Given the coef-
ficients km , find the expansion of the polynomial P(x, h) in powers of h that
provides a best approximation to the function F(hx)#��

0 kmhmxm on the
fixed interval &1�x�+1.

We cannot find in [1] a proof of the fact that the polynomial P(x, h),
as well as the smallest deviation L(x), are analytic functions of h (at h=0).
As a matter of fact, Chebyshev does not need it, since explicitly, and from
the viewpoint of possible applications, he is only interested in finding an
approximating polynomial PN(x, h) of degree n with respect to x and of
degree N with respect to h such that, as h � 0,

P(x, h)=PN(x, h)+O(hN+1).

The question of convergence of PN(x, h) to P(x, h) as N � � is ignored.
Chebyshev solves the problem posed in several steps.

1. Let N=n. Denote by S(x) the partial Taylor sum of the function
F(x),

S(x)=:
n

0

kmxm.

Then

max
x�1

|S(hx)&F(hx)|=O(hn+1),

and, therefore, by the definition of the polynomial P(x, h), similarly,

max
x�1

|P(x, h)&F(hx)|=O(hn+1).

Thus,

max
x�1

|P(x, h)&S(hx)|=O(hn+1),

which implies that P(x, h)#S(hx).
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2. Let kn+1=kn+2= } } } =kn+ p&1=0, but kn+ p {0. Assume that
N=n+ p. Then the polynomial P(x, h) must have the form

P(x, h)=S(hx)+O(hn+ p)

or

P(x, h)=S(hx)+hn+ pQ(x, h),

where Q(x, h) is a polynomial of degree n with respect to x, and we shall
assume

Q(x, h)=Q0(x)+hQ1(x)+ } } } +h&Q&(x)+O(h&+1) (&=0, 1, 2, ...).

By the definition of P(x, h), the polynomial Q(x, h) should be selected in
such a way that the expression

max
x�1

|F(hx)&P(x, h)|=max
x�1 } :

�

m=n+ p

kmhmxm&hn+ pQ(x, h) }
=hn+ p max

x�1
|kn+ pxn+ p&Q0(x)+O(h)|

is minimized. This is achieved by minimizing the expression

max
x�1

|kn+ pxn+ p&Q0(x)|.

Therefore, the polynomial Q0(x) of degree n deviates least from the func-
tion kn+ pxn+ p, so it is kn+ p times the polynomial of degree n that deviates
least from xn+ p, whose construction was discussed earlier. Chebyshev
points out that the case p=1 ``is the only one that makes sense in the
parallelogram theory,'' and in this case, as we have seen, the solution can
be obtained via the trigonometric polynomial

Q0=kn+1 {xn+1&
1
2n Tn+1(x)=

found by Chebyshev.

3. While assuming that kn+1 {0 for the rest of the argument,
Chebyshev computes the polynomial Q1(x) in the following way. By a
property of P(x, h), the polynomial

Q1(x, h)=
Q(x, h)&Q0(x)

h
=Q1(x)+hQ2(x)+ } } }

12 V. L. GONCHAROV



of degree n with respect to x minimizes the expression

1
hn+1 max

x�1
|F(hx)&P(x, h)|

=max
x�1 }kn+2hxn+2+kn+1

Tn+1(x)
2n &hQ1(x, h)+O(h2) } ,

and, therefore, the equations

{kn+1

Tn+1(x)
2n +kn+2 hxn+2&hQ1(x, h)+O(h2)=

2

=L2(h)

and

(x2&1)
d

dx {kn+1

Tn+1(x)
2n +kn+2hxn+2&hQ1(x, h)+O(h2)==0

have at least n+2 common roots. The first of these equations can be
written as

k2
n+1

T 2
n+1(x)
22n +2hkn+1

Tn+1(x)
2n [kn+2 xn+2&Q1(x)]&L2(h)+O(h2)=0.

(5)

As far as the second one is concerned, its roots are within O(h) of those of
(x2&1) T $n+1(x), so they have the form

xm(h)=xm+O(h), where xm=cos
m?

n+1
(m=0, 1, ..., n+1).

Note that

L(h)=L(0)+hL$(0)+O(h2)=
|kn+1 |

2n +kL$(0)+O(h2)

and

Tn+1(xm(h))=Tn+1(xm+O(h))

=Tn+1(xm)+O(h) T $n+1(xm)+O(h2)

=(&1)m+O(h2).
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Set x=xm(h) in (5):

2hkn+1

(&1)m

2n [kn+2 xn+2
m &Q1(xm)]&h

|kn+1 |
2n&1 L$(0)+O(h2)=0.

Since this is an identity with respect to h, the coefficient of h has to be zero,
i.e.,

kn+2xn+2
m &Q1(xm)=(&1)m *, (*=L$(0) sign kn+1),

or

kn+2xn+2
m &Q1(xm)&*Tn+1(xm)=0.

Therefore, the polynomial

kn+2xn+2&Q1(x)&*Tn+1(x)

of degree n+2 has the same roots as (x2&1) T $n+1(x), which means that
one polynomial is a multiple of the other:

kn+2xn+2&Q1(x)&*Tn+1(x)=+(x2&1) T $n+1(x),

so

Q1(x)=kn+2 xn+2&*Tn+1(x)&+(x2&1) T $n+1(x).

But the polynomial Q1(x) has degree n, so the coefficients of xn+1 and
xn+2 have to be zero. This implies that *=0, +=kn+2 �(n+1)2n; therefore

Q1(x)=kn+2 {xn+2&
1

(n+1) 2n (x2&1) Tn+1(x)= .

4. Chebyshev continues to carry out the same kind of computation,
turning it into a recursive argument, and finding next Q2(x), Q3(x), etc.
Given the functions Qm(x), one can determine Q(x, h), P(x, h), and finally
p(x, h) and L(h).

Without getting into the details, let us illustrate the result of the example
considered by Chebyshev for the case n=4, k5 {0:

14 V. L. GONCHAROV



p(x, h)={k0+
1
16

k6h6+
7k2

5 k8+2k5 k6 k7&k3
6

64k2
5

h8+ } } } =
+{k1&

5
16

k5h4&
31k5k7&3k2

6

64k5

h6+ } } } = (x&a)

+{k2&
13
16

k6h4&
87k2

5 k8+10k5k6k7&5k3
6

64k2
5

h6+ } } } = (x&a)2

+{k3+
5
4

k5h2+
22k5k7&k2

6

16k5

h4+ } } } = (x&a)3

+{k4+
7
4

k6h2+
36k2

5 k8+2k5k6k7&k3
6

16k2
5

h4+ } } } = (x&a)4.

In this formula, the quantities that contain positive powers of h con-
stitute ``the changes that have to be made in the approximate quantity f (x),
given by its expansion into ascending powers of (x&a), in order to achieve
the smallest possible deviation between x=a&h and x=a+h, for h being
quite small.''

3. THE MEMOIR ``SUR LES QUESTION DES MINIMA
QUI SE RATTACHENT A� LA REPRE� SENTATION

APPROXIMATION DES FONCTIONS''

For several years, Chebyshev's ideas matured and, in 1857, instead of
continuing the memoir [1], he presented a new memoir to the Academy of
Science, which was composed in a purely theoretic manner, and which
contained a complete exposition of the method of best approximation.
It is entitled ``Sur les question des minima qui se rattachent a� la repre� sen-
tation approximative des fonctions'' [4]. We find here: (1) a general theory
leading to ``Chebyshev's necessary conditions;'' (2) an application of the
theory to three basic problems (``cases''), which are further solved com-
pletely.

The question is generalized in the following way. A function F(x; p1 , p2 ,
..., pn), which depends on a variable x and parameters p1 , p2 , ..., pn , is
given. The variable x belongs to some closed interval that one can, without
loss of generality, take to be [&1, +1]. As far as the parameter values are
concerned, we shall assume that they belong to an open domain (P). We
shall assume that the function F is continuously differentiable with respect
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to both x and pi .
7 One has to find conditions on the values of the

parameters pi that are necessary to make the quantity

max
x�1

|F(x; p1 , p2 , ..., pn)| (6)

smaller than for any other values that are sufficiently close.
Let L denote the specified maximum, and let the ``deviation points'' be

the points x at which F is equal to &L or +L. Suppose that the number
of deviation points is finite,8 and let us denote them by x1 , x2 , ..., x+ .

Chebyshev claims that if a system of parameter values in hand provides
the minimum, then one of the following two statements holds. Either the
number of deviation points is at least one more than the number of
parameters

+�n+1

or the rank of the matrix

_
P11

P21

b
Pn1

P12

P22

b
Pn2

} } }
} } }
} } }
} } }

P1+

P2+

b
Pn+
& , (17)

where

Pik=
�F
�pi

(xk)#
�F
�pi

(xk ; p1 , p2 , ..., pn),

is smaller than +.
This theorem is proved by contradiction. Assume that +�n, so that our

matrix has at most as many columns as rows and that its rank is equal to
the number of columns +. Then the linear system in the n variables
N1 , N2 , ..., Nn

:
n

i=1

PikNi=Fk (k=1, 2, ..., +) (8)

16 V. L. GONCHAROV

7 This assumption is actually present in the original manuscript: ``In order to simplify the
investigation, we leave aside the case of F or its derivatives with respect to x and the
parameters not being finite and continuous.''

8 Note that the number of deviation points may not even be countable.



has a non-trivial (non-zero) solution for any values of Fk , as long as they
are not all zero. Let the numbers N1 , N2 , ..., Nn be a non-trivial solution to
the linear system (8) for

Fk=F(xk ; p1 , p2 , ..., pn) (=\L{0).

Then there exists a number | such that the value of (6) at
p1&|N1 , p2&|N2 , ..., pn&|Nn is smaller than its value at p1 , p2 , ..., pn .
Indeed, let

8(x, |)#F(x; p1&|N1 , ..., pn&|Nn).

Then

8(x, |)=F(x; p1 , ..., pn)

&| :
n

i=1

Ni
�F
�pi

(x; p1&%|N1 , ..., pn&%|Nn) (0<%<1)

and, therefore,

8(xk , |)=F(xk ; p1 , ..., pn)&| :
n

i=1

Ni _ �F
�pi

(xk ; p1 , ..., pn)+=i&
=Fk&| \Fk+ :

n

i=1

Ni =i+=(1&|) Fk&| :
n

i=1

Ni =i ,

where the =i tend to zero as | tends to zero. If we take | positive and
sufficiently small, we shall have

|8(xk , |)|<|Fk |,

that is,

|F(xk ; p1&|N1 , ..., pn&|Nn)|

<|F(xk ; p1 , ..., pn)| (k=1, 2, ..., +).

From this, using continuity, it is easy to conclude that, for a sufficiently
small positive |, the following inequality also holds:

max
x�1

|F(x; p1&|N1 ..., pn&|Nn)|

<max
x�1

|F(x; p1 ..., pn)|.
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The theorem just proved is fundamental for Chebyshev. It opens the
road to computing the parameters. If the number + of deviation points
exceeds the number n of parameters by 1 or more, then the relations

F 2(x i)=L2, (x2
i &1) F $(xi)=0

hold at the deviation points xi . The number of these relations is 2+, and,
therefore, if the problem is viewed from a standpoint that is characteristic
of Chebyshev, the ++n+1 variables x1 , ..., x+ , p1 , ..., pn , and L can be
computed. If the number + of deviation points does not exceed the number
n of parameters, then the missing n&++1 equations are obtained after the
rank of the matrix (7) is decreased.9

The problem considered by Chebyshev in [1], to which he returns here
(``the first case''), corresponds to the assumption

F(x; p1 , ..., pn)#p1xn&1+ p2xn&2+ } } } + pn& f (x)

(along with Chebyshev, we take the degree of the approximating polyno-
mial to be n&1). With this assumption,

Pik=xn&i
k ,

and, since the xi 's are distinct, the matrix (7) has the form

_
xn&1

1

b
x1

1

xn&1
2

b
x2

1

} } }
} } }
} } }
} } }

x+
n&1

b
x+

1 & ,

and its rank is necessarily equal to +. Therefore, in this case the number of
deviation points exceeds the number of parameters by at least 1. This fills
the gap left in the ``Theory of Mechanisms'' [1].
Chebyshev's ``second case'' corresponds to the more general assumption

F(x; p1 , ..., pn)#*(x)[ p1xn&1+ p2xn&2+ } } } + pn& f (x)],

where *(x) is a given function that is positive on the basic interval
(a ``weight,'' in the terminology of more recent authors). It is easy to check

18 V. L. GONCHAROV

9 The simplest examples that illustrate how the rank of the matrix can be decreased are (1)
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meaning in these examples is obvious. In both cases there is only one deviation point.



that the rank of the matrix (7) cannot be decreased in this case. Note that
Chebyshev considers only weights of the form

*(x)=
1

A(x)
, (9)

where A(x) is a polynomial that does not vanish on the basic interval.10

The ``third case'' concerns the approximation of a given function by a
rational function with variable coefficients

F(x; p1 , ..., pn)#
p1xn&l&1+ p2xn&l&2+ } } } + pn&l

pn&l+1x l+ pn&l+2x l&1+ } } } + pnx+1
& f (x).

In this case, as is shown by the computation offered by Chebyshev, the
number of deviation points xk does not necessarily exceed the number n of
parameters, but this happens only when the approximating function is a
fraction such that the first n+1&+ leading coefficients vanish both in the
numerator and in the denominator.

While mentioning that, ``with the help of traditional methods of algebra,''
the problems of the general type he considered ``require computations that
are absolutely impossible,'' Chebyshev then takes up some specialized
examples, where he is able to reduce the problem to ``questions of indeter-
minate analysis''.b

First of all, a different solution (without using differential equations) is
given to the problem of finding a polynomial P(x) of a given degree and
with a given leading coefficient, say equal to 1, that deviates least from
zero. Namely, the ratio (P2(x)&L2)�(x2&1) is the exact square of a
polynomial Q(x) of degree n&1, so that

P2(x)&(x2&1) Q2(x)=L2. (10)

This identity can be rewritten as

P(x)

Q(x)
=- x2&1+

L2

Q(x)[P(x)+Q(x) - x2&1]
,

so it is clear that P(x)
Q(x) is a fraction appropriate for decomposing - x2&1

into a continued fraction

- x2&1=x&
1|
|2x

&
1|
|2x

& } } } .
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This allows one to calculate both the polynomial P(x), and the polynomial
Q(x), up to a constant multiple, which can easily be found from an
additional condition.

An argument of the same kind is used by Chebyshev to find the
polynomial P(x) that deviates least from zero (with the same additional
condition) for the case of an arbitrary weight of the form (9), where

A(x)= `
m

&=1

(x&a&).

The identity (10) now generalizes in the following way:

P2(x)&(x2&1) Q2(x)=L2A2(x).

In the search for the most general form of the polynomials P(x), Q(x),
and constant L, Chebyshev uses the following trick. He starts with a
``particular'' solution

P0(x)=
1
2 { `

m

&=1 \�
x&1
:&&1

+�x+1
:&+1+

2

+ `
m

&=1 \�
x&1
:&&1

+�x+1
:&+1+

2

= ,

Q0(x)=
1

2 - x2&1 { `
m

&=1
\�x&1

:&&1
+�x+1

:&+1+
2

& `
m

&=1
\�x&1

:&&1
+�x+1

:&+1+
2

= ,

L0= `
m

&=1

2
:&

2&1
,

and shows that any solution P(x), Q(x), L must have the property that
the polynomials P0(x) P(x)&(x2&1) Q0(x) Q(x) and P0(x) Q(x)&P(x)
Q0(x) are divisible by A2(x), while the respective ratios

X(x)=
P0(x) P(x)&(x2&1) Q0(x) Q(x)

A2(x)
,

Y(x)=
P0(x) Q(x)&P(x) Q0(x)

A2(x)

satisfy the identity

X2(x)&(x2&1) Y2(x)=(L0 L)2.

But all solutions of this last identity are known from the ``first case.'' From
this, one can immediately compute the polynomials P(x) and Q(x), and the
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constant multiple that enters the solution can be found from the additional
condition.

The third problem considered by Chebyshev in the memoir under discus-
sion is a generalization of the first one, as is the second one, but it is
noticeably more complex. Among all rational fractions U(x)

V(x) where the
degrees of both numerator and denominator are given (here the coefficients
of both the numerator and the denominator are now arbitrary), one has to
find a fraction that deviates least from a given polynomial u(x) of a degree
that is one more than the degree of the numerator of the fraction.

Based on the derived necessary conditions on the deviation points,
Chebyshev concludes that the polynomials U(x) and V(x) necessarily
satisfy an identity of the form

[u(x) V(x)&U(x)]2&L2V2(x)=(x2&1) W2(x),

where W(x) is some polynomial. Further investigation requires decomposing
one of the functions

�[u(x)+L](x2&1)
u(x)&L

or �[u(x)+L](x+1)
[u(x)&L](x&1)

into a continued fraction of the form

q0+
1|
|q1

+
1|
|q2

+ } } } ,

where the qi denote polynomials. As a result of a very subtle analysis, a
precisely formulated rule is obtained that allows one to compute first the
deviation L and then the fraction U(x)

V(x) itself.
The memoir under discussion is naturally complemented, without

introducing anything fundamentally new, by Chebyshev's later work ``On
Functions That Deviate Little from Zero for Some Values of the Variables''
(1881) [10]. The following problems are solved here:

(1) Among all algebraic polynomials of degree n that take on a given
value M at a given point x=H (H>1), find the one that deviates least
from zero on the interval |x|�1.

(2) Among all trigonometric polynomials11 A0+�n
m=1 (Am cos mx+

Bm sin mx) of degree n that take on a given value M at the point x=x1 ,
find the one that deviates least from zero in the interval |x|�x0

(0<x0<x1<2?).
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The solutions to these problems are expressed in terms of polynomials,
namely:

(1) M
Tn(x)
Tn(H )

, (2) M
T2n(sin(x�2)�sin(x0�2))

T2n(sin(x1 �2)�sin(x0 �2))
.

4. BEST APPROXIMATION IN A NORMED LINEAR SPACE

Let us return to Chebyshev's main problem but, in order to get closer to
the essence of the questions it raises, we shall give it a more transparent,
a more abstract form.

We say that a family of elements form a metric space R if, for each pair
of elements a and b from R, there is a real number $(a, b), called the
distance between a and b, that has the following properties:

(1) $(a, b)�0; $(a, b)=0 if and only if a=b, that is, a and b coin-
cide;

(2) $(a, b)=$(b, a);

(3) $(a, b)�$(a, c)+$(c, b) (``triangle inequality'').

A subset E of a space R is called bounded if, for each a in R, the set of
numbers $(a, x), where x ranges over E, is bounded. It follows from the
triangle inequality that the boundedness of a set E is equivalent to the
existence of at least one element a0 so that the set of numbers $(a0 , x),
where x # E, is bounded.

A sequence of elements [xn] has limit a if limn � � $(a, xn)=0. Any
sequence either does not have a limit or has only one limit.

The distance $(x, y) is a continuous function of both variables x and y,
as follows from the triangle inequality.

A subset E is said to be compactc if any bounded infinite subset of E
contains a sequence that converges, that is, has a limit.12 A subset E is said
to be closed if it contains the limits of all sequences in E that converge.

Let E be a subset of the space R, and let a be an element of R. The lower
bound L of distances $(a, x), where x ranges over E, is called the distance
from the element a to the set E:

L#L(a, E)= inf
x # E

$(a, x).
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opposed to the usual definition of a compact set.



If an element x0 of a set E has the property that its distance from a is
the same as the distance from E to a,

$(x0 , a)=L,

then it is said that x provides a best approximation to a from the set E. The
quantity L itself is called the magnitude of the best approximation or simply
the distance.

The questions arise:

(1) Does there exist an element x0 in E that provides a best
approximation to a?

(2) Is this element x0 unique?

Let us consider the first question first.
By the definition of the infimum, there is a sequence [xn] in E, such that

lim
n � �

$(a, xn)=L.

Obviously the set that consists of the elements [xn] is bounded. If the set
E is compact, then one can choose a convergent subsequence [xpn

]. Let
xpn

� x0 . If, in addition, the set E is closed, then the element x0 also
belongs to the space E. Then, since the distance is continuous, $(x0 , a)=L;
that is, x0 provides a best approximation.

So, if a set E in a metric space R is compactd and closed, then, for any
a in R, the set E contains a best approximation to a.

The case of special interest is that of R being a linear space. This means
that the following operations are defined: (1) addition, (2) multiplication
by a scalar (real number). These operations satisfy all the usual algebra
laws. The sum of elements a and b is denoted by a+b. The product of an
element a by a scalar * is denoted by *a. The zero element of the space is
denoted by 0.

A collection of elements a1 , a2 , ..., an of a linear space is called linearly
independent if the equation

:
n

1

*iai=0

implies that *1=*2= } } } =*n=0. A space is infinite-dimensional if there
exist linear independent collections with any number of elements. In the
opposite case the space is finite-dimensional and the maximum number of
linear independent elements is called the dimension of the space.

d See footnote c.
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Let the dimension of a space be p, and let

e1 , e2 , ..., ep

be linearly independent elements in the space. Then, for any x in the space,
the collection x, e1 , e2 , ..., ep is not linearly independent, and, therefore,
there is a dependence of the form

x=!1e1+!2e2+ } } } +!pep ,

where !1 , !2 , ..., !p are some uniquely defined numbers. Therefore, an
element of a p-dimensional linear space is defined by the values of p scalar
parameters (coordinates), and this dependence is linear.

A linear space is said to be normed if it has a metric defined in terms of
a norm. For each element a, there is a number &a& (the norm of the element
a) with the properties:

(1) &a&�0, &a&=0 if and only if a=0,

(2) &*a&=|*| &a&,

(3) &a+b&�&a&+&b&.

A space is called strictly normed if the equation

&a+b&=&a&+&b&

implies that *a=+b for some non-negative * and + (*2++2>0).
In a normed linear space a metric is defined as follows:

$(a, b)=&a&b&.

All the required properties of a metric are satisfied, since they follow from
the properties of the norm.

In a finite-dimensional linear space, as we have seen, an element x is
defined by finitely many parameters !i . The norm of the element x is a con-
tinuous function of the parameters. Indeed, let ! (n)

i � !i (i=1, 2, ..., p).
Then, by setting x(n)=� p

1 ! (n)
i ei , x=� p

1 !iei , we obtain

&x(n)&x&=":
p

1

(!(n)
i &!i) ei"�:

p

1

|! (n)
i &!i | &ei& � 0,

and, therefore,

x(n) � x, &x(n)& � &x&.
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This implies that a finite-dimensional normed linear space is necessarily
compact and closed. To prove this, look at a closed set of points in the
p-dimensional space of parameters !i , for which

max[ |!1 |, |!2 |, ..., |!p|]=1.

On this set, denoted by K, the function &x& that is continuous in the
parameters !i attains its smallest value $. This value $ is positive since &x&
becomes zero only if x=0. Thus, if the largest of the absolute values of the
parameters is equal to one, then the norm of the element is greater than or
equal to $. Let us now take a bounded sequence [x(n)] of elements. Assume
that &x(n)&<M. Let x(n)=� p

1 ! (n)
i ei . Consider a sequence [ y(n)], where

y(n)=
x(n)

_n
, _n=max[ |! (n)

1 |, |! (n)
2 |, ..., |! (n)

p |].

Then the elements y(n) belong to the set K, and, as proved earlier,
&y(n)&�$, that is, &x(n)&�_n�$, which implies that _n�&x(n)&�$<M�$.

But this means that |! (n)
i |<M�$ for all values of i and n, and, therefore,

one can choose a subsequence [mn] such that ! (mn)
i � !i (i=1, 2, ..., p), and

then x(mn) � x, where x=� p
1 !i ei . This proves compactness. Closedness is

obtained even more easily.13 Indeed, let the elements of the sequence [x(m)]
that converges to x belong to a p-dimensional normed linear space E.
Assume that ei (i=1, 2, ..., ep) is a system of linearly independent elements
from E and that x(n)=� p

1 ! (n)
i ei . Choose a subsequence [mn] such that

!(mn)
i � !i (i=1, 2, ..., p). Then x(mn) � � p

1 !iei , and, on the other hand,
x(mn) � x; therefore, x=� p

1 !iei , that is, x belongs to E.
Collecting the results obtained, one can make the following statement. If

the set E in a normed linear space R is also linear and finite-dimensional,
then, for each element a in R, there is an element x0 in E that provides a
best approximation to a.

Passing to the next question��about the uniqueness of best approximation��
let us note here the following sufficient condition, under which uniqueness
necessarily takes place. This condition consists of the requirement that the
space R be strictly normed.

Assume to the contrary that the space E has two different elements x$0
and x"0 that are best approximations to a, so thate

&x$0&a&=L, &x"0&a&=L, x$0{x"0, L>0.
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Then,

"x$0+x"0
2

&a"="x$0&a
2

+
x"0&a

2 "�"x$0&a
2 "+"x"0&a

2 "=L.

Here the inequality is, in fact, strict, because otherwise, since the space is
strictly normed, it would follow that

*$(x$0&a)=*"(x"0&a) (*$, *"�0, *$2+*"2{0)

The equality *$=*" is impossible because x$0{x"0. If *${*," then

a=
*$x$0&*"x"0

*$&*"
, "*$x$0&*"x"0

*$&*"
&a"=0,

which is also impossible. Therefore, a contradiction is obtained:

"x$0+x"0
2

&a"<L.

The results presented can be given a somewhat more general form.
It is obvious that a subset E of elements of a linear space is a linear space

itself if the element *a++b belongs to E whenever the elements a and b
belong to E, for all scalars * and +.

Let us call a set M of elements of a linear space R an affine set if the
element *a++b belongs to M, whenever the elements a and b belong to M,
and the scalars * and + satisfy the relation *++=1.

Each linear space is an affine set. The converse statement holds if and
only if the affine set in question contains the zero element.

If x ranges over the elements of a linear space E, and a is an arbitrary
element of R, then y=x+a ranges over the elements of some affine set M.
Conversely, if y ranges over the elements of an affine set M, and a is one
of its elements, then x= y&a ranges over the elements of some linear
space.

Let us now consider the following generalized problem: find an element
y0 of a given affine set M that provides a best approximation to the zero
element. In other words: find an element y0 of an affine set M that ``deviates
least from zero.''

The previous remark reduces this generalized problem to the one
considered earlier. The results pertaining to the existence and uniqueness of
the approximation are thus generalized automatically.
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Everything discussed above can be given a ``geometric'' interpretation by
considering the so-called gauge body of Minkowski.

The gauge body (Eichko� rper) or unit ball K is the set of elements x of a
linear space R with the norm less then or equal to one:

&x&�1.

Let us note the following properties of the gauge body:

(1) If an element a belongs to K, then any element *a, where |*|�1
also belongs to K.

(2) K is a convex body. If a and b belong to K, then, given that
*, +�1, *++=1, the element *a++b also belongs to K.

(3) In particular, if the space R is strictly normed, then the property
(2) is strengthened in the sense that the element *a++b not only belongs
to K but also is in the interior of K. That is, all elements that are
sufficiently close to *a++b also belong to K.

Along with the gauge body K#K1 , let us consider the ``similar'' bodies
K* 0<*<�) defined by the inequalities

&x&�*.

It is clear that the bodies K* also have the properties (1)�(3).
Let us call an affine set M supporting for a body K* if the minimum of

the norms of elements of E is equal to *. This means, first, that there is at
least one element that is common to the set E and the body K* and,
second, that for arbitrarily small =>0, the set E and the body K*&= do not
have any common elements.

Property (2) implies that the set of points that are common to a affine
set and a body K* is also a convex set. Property (3) implies that, in a
strictly normed linear space, a supporting affine set has only one common
element with the corresponding body K* . If the space is not strictly
normed, it then depends on the choice of the affine set M as to whether there
will be only one common element or an infinite set (necessarily convex) of
them.

Let us now turn to the specific realizations of the general schemes
presented earlier.

These specific realizations take one form or another, depending on the
nature of the elements that make up the space R and what is understood
by a ``sum,'' a ``multiplication by a scalar,'' and a ``norm.'' In the applica-
tions of interest here, the role of elements is played by functions of one or
several variables, real or complex, defined on a fixed domain (D). The
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``sum'' of the elements is the usual sum of functions. The ``multiplication by
a scalar'' is the multiplication of a function by a constant. As far as, finally,
the ``norm'' is concerned, it can be defined in different ways, and the result-
ing ``function space'' depends on the definition of the norm. Of course, the
set of elements of the space depends on the choice of the norm.

On the other hand, the role of elements can also be played by points,
say, in n-dimensional Euclidean space (the n-tuples of numbers that are
their coordinates). Then the ``addition'' is ``geometric'' or ``vector'' addition,
in which the n-tuples are added componentwise. The ``multiplication by a
scalar'' is multiplication of all coordinates by that scalar. The same can be
said about choosing the norm as in the case of function spaces.

The name given to such a space depends on the nature of its elements
and the choice of the norm. The following table f lists the spaces that will
be referred to in this paper. To be definite, we shall restrict the choice
of the functional space to the case of one independent real variable, and
we shall even assume that the domain (D) mentioned is the fixed interval
(&1, +1). Also, \>0.

Notation Elements Norm

L(s)(*), (s�1) { f : |
+1

&1
*(x) | f (x)| s dx<�= {|

+1

&1
*(x) | f (x)| s dx=

1�s

l (s)
n (*), (s�1) [(x1 , x2 , ..., xn)] { :

n

i=1

*i |xi |
s=

1�s

L(s), (s�1) { f : |
+1

&1
| f (x)| s dx<�= {|

+1

&
| f (x)| s dx=

1�s

l (s)
n , (s�1) [(x1 , x2 , ..., xn)] { :

n

i=1

|xi |
s=

1�s

C(*) Continuous functions f max
|x| �1

*(x) | f (x)|

c(*) [(x1 , x2 , ..., xn)] max
i # [1, n]

*i |x i |

C Continuous functions f max
|x| �1

| f (x)|

c [(x1 , x2 , ..., xn)] max
i # [1, n]

|x i |

For brevity, the spaces that are denoted by letters C or c will be called the
spaces with Chebyshev's norm, or Chebyshev spaces. The spaces that are
denoted by the letters L or l will be called the spaces with the power-norm,
or power-spaces.
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In the case of the power-spaces L(s)(*), L(s), the functions that differ only
on a set of measure zero are identified. Thus, the elements in this case are
classes of functions.

The triangle inequality is obvious for the Chebyshev spaces. For the L(s)

spaces with s�1, it follows from the so-called Minkowski inequality. The
case s=2 is especially important for two reasons. First, the metrics in the
spaces L(2) and l (2) are completely analogous to that in Euclidean spaces.
And, second, the conditions of the extrema in this case are linear. If s<1,
then the power spaces become defective in the sense that the triangle
inequality fails. Despite this fact, in the case of finite-dimensional affine
sets, a best approximation nevertheless exists.14

The L(s) spaces with s>1 are strictly normed,15 and this, as we have
seen, implies uniqueness of a best approximation. This kind of statement,
however, would be incorrect, for both the L(s) spaces with s=1 and the
Chebyshev spaces. Under these circumstances, it is easy to visualize the
situation, given that in the case of the point spaces l (s)

n (*) with s>1, the
gauge body is smooth and the supporting planes are the tangent planes.
For s=1 and in the case of the Chebyshev space cn(*), the gauge body is
a convex polyhedron, so that the supporting plane can coincide with the
``faces'' or the ``edges.'' Finally, for the L(s) spaces with s<1, even the
convexity is lost.

The case of a Chebyshev space is especially interesting to us. It is, in
some sense, the limit case, since the norm in the space L(s) turns into that
in the space C as s � �. Whether the problem of approximating an ele-
ment a from a linear space E has a unique solution depends, generally
speaking, on both the element a and the space E. However, Haar [47]
found a property that characterizes the finite-dimensional linear spaces E in
which uniqueness holds for an arbitrary element a. This property consists of
the requirement that every element of the p-dimensional space L be a function
with no more than p&1 zeros in the basic interval. The systems of functions
that generate this kind of spaces were called Chebyshev systems by Bernstein
[27]. The simplest examples are exactly the spaces of polynomials of a given
degree with arbitrary weight considered by Chebyshev.

In the case of functions of several variables, as in the case of functions
of a complex variable, the statement about uniqueness of a best approximation
by a polynomial of a given degree does not hold. The first counterexamples
were found by Tonelli [72].
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5. NECESSARY AND SUFFICIENT CONDITIONS
OF APPROXIMATION IN CHEBYSHEV

PROBLEMS

In his major memoirs [1, 4], Chebyshev only deals with the spaces that
we denoted C or C(*) and he is only interested in approximating a given
element��a continuous function��from a finite dimensional space of poly-
nomials of a given degree n. While starting with the ``known'' fact about the
deviation taking on its maximal value at least n+2 times, and developing
a series of consequences that follow from it, he comes with necessity to the
formula for the sought-for polynomial. The subtle argument by Chebyshev,
based on the theory of continued fractions, was reproduced by Bertrand in
his ``Calcul diffe� rentiel'' in 1864, and this is how Chebyshev polynomials
became widely known. However, it took almost half a century before it was
noticed that the original argument by Chebyshev admits significant reduc-
tion. Indeed, one can formulate rather simple necessary and sufficient con-
ditions for a polynomial that provides a best approximation, and then it
only remains to check that the polynomials found by Chebyshev satisfy
these conditions. The fact that the ``lengthy considerations dealing with the
theory of continued fractions'' can be avoided was apparently first noticed
in 1901 by Blichfeldt, who pointed out [40] that the graph of the deviation
on a given interval is characterized by the existence ``of at least n+2
alternations of two kinds of maxima,'' while mentioning that he did not
know of any original works by Chebyshev where the above property
could be found. Indeed, the collected works of Chebyshev do not contain
anything pertaining to the sign changes of the deviation, which does
not imply, of course, that the fact of alternation itself was not known to
him.

In 1902, in Go� ttingen, there appeared a dissertation by Kirchberger [53]
where the problem of signs was given full consideration, even in the case
of functions of many variables. In the case of one variable, the modern
formulation of the approximation conditions was given by E. Borel in his
monograph ``Lec� ons sur les fonctions de variables re� elles et les de� velop-
pements en se� ries de polynômes'' (1905) [41]. A polynomial P(x) of degree
n is a best approximation to the function f (x) on some interval if and only
if the given interval contains at least n+2 points xi such that x1<x2<
} } } <xn+2 and R(x i)==(&1) i L (==+1 or ==&1), where R(x)=
f (x)&P(x). The sufficiency of this condition follows from the following
argument. If the deviation R(x)= f (x)&P(x) satisfies the condition, and
Q(x) is another polynomial of the same degree, such that | f (x)&Q(x)|<L
on the given interval, then the polynomial P(x)&Q(x) of degree n has
the same signs at the points xi as does R(x) and is therefore equal to
zero at least n+1 times, which is impossible. The minimal property of the
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polynomial Tn=cos narc cos x (&1�x�1) follows immediately from
this, because

Tn\cos
n&i+1

n
?+==(&1) i L (i=1, 2, ..., n+1),

where

==(&1)n+1 L=1.

These conditions can be generalized to the case of many variables;
however, they become cumbersome and difficult to use.

Let a function f be approximated in some domain (D) by generalized
polynomials of the form �n

i=1 ci, i , where , i are functions that are
continuous in (D), and ci are arbitrary parameters (the variable arguments
are omitted for brevity). Then a polynomial P of the specified form deviates
least from f in (D) if and only if there does not exist a polynomial Q of the
same form that takes on positive values at the points 2+ where
f &P=+L and negative values at points 2& , where f &P=&L. Indeed,
if the polynomial P deviates least from f and the polynomial Q had the
specified property, then, for sufficiently small positive values of *, the poly-
nomial P&*Q would deviate less from f than does P. On the other hand,
if there were some polynomial Q deviating from f in (D) less than P, then
the polynomial P&Q would be positive at the points 2+ and negative at
the points 2& . In the particular case of only one independent variable and
the ``polynomials'' �n

i=1 ci, i obtained from a Chebyshev system of func-
tions ,i , the condition formulated above is equivalent to the existence of at
least n+1 points of deviation with the alternating signs (Chebyshev�Borel
condition). In another particular case of an arbitrary number of independ-
ent variables and linear approximating polynomials, the condition reduces
to non-existence of an (n&1)-dimensional plane separating the set 2+

from the set 2& (Kirchberger condition).

6. LEAST-SQUARES APPROXIMATION AND THE MEMOIR
``ON FUNCTIONS THAT DEVIATE LEAST FROM ZERO''

Chebyshev's works contain the explicit and generally formulated
problem of best approximation to a given function f (x) by a polynomial
Pn(x) of degree n in the space C, that is, with the norm equal to the maxi-
mum of the modulus. However, a similar problem in the space L(2), that is,
with the norm equal to the square root of the integral of the square of the
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difference, was already solved long before then. Indeed, the polynomial
Pn(x) that minimizes the integral

|
+1

&1
[ f (x)&Pn(x)]2 dx

is nothing but the sum of the first n terms of the Legendre expansion of the
function f (x). Chebyshev came very close to the analogous problem in the
space L(2)(*), that is, with an arbitrary weight. However, instead of an
integral, he introduced a sum, distributed over the sequences of points in
the given interval. In this way, he found in his 1855 memoir ``On
Continued Fractions'' [2] the polynomial Pn(x) that minimizes the sum

:
m

i=1

*(xi)[ f (xi)&Pn(xi)]2 (&1�x1<x2< } } } <xm�1).

It is interesting that the choice s=2 is motivated by considerations from
probability theory; namely, the effect of the error in the interpolation data
on the sought-for quantity is being minimized. It already follows from
Gauss' research that, under the assumption of the normal distribution of
the error, the least-squares method should be used for data fitting.

Chebyshev's results can be extended, without significant changes, to the
case of the integral

|
+1

&1
*(x)[ f (x)&Pn(x)]2 dx.16

The polynomial Pn(x) is the sum of n terms in the expansion of f (x)
into a series of orthogonal polynomials of increasing degrees 8n(x)
(n=0, 1, 2, ...),

f (x)t :
�

&=0

c&8&(x), c&=|
+1

&1
*(x) f (x) 8&(x) dx,

where the polynomial system [8&(x)] is defined by the weight *(x) accord-
ing to the conditions

|
+1

&1
*(x) 8i (x) 8k(x) dx={0,

1,
i{k,
i=k.
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In particular, notice the following fact. Among all polynomials of degree
n with the leading coefficient equal to one, Pn(x)=xn+ } } } , the integral

|
+1

&1
*(x) P2

n(x) dx

is minimized by a scalar multiple of 8n(x). To verify this, it is enough to
write Pn(x) as a linear combination of the orthogonal polynomials 8&(x).

If *(x)=const, then the polynomials 8&(x) turn, up to a scalar multiple,
into Legendre polynomials, defined by the known expansion

1

- 1&2sx+s2
= :

�

&=0

X&(x) s&.

A more general case *(x)=const�(1+x)* (1&x)+ was considered by
Jacobi in 1859. The respective polynomials 8&(x) are scalar multiples of the
Jacobi polynomials J (*, +)(x) defined by the expansion

(1+s+- 1&2sx+s2)* (1&s+- 1&2sx+s2)+

2*++
- 1&2sx+x2

= :
�

&=0

J (*, +)
& (x) s&.

The orthogonality property of Jacobi polynomials was, among other
things, derived by Chebyshev directly from this expansion in his 1869 note
``On Functions That Are Similar to the Legendre Functions'' [8].

These two theories, the one dealing with uniform or Chebyshev
approximation and the other dealing with least-squares approximation, are
shown to be related in Chebyshev's 1872 memoir ``On Functions That
Deviate Least from Zero'' [9]. Here, as previously, one is looking for a
polynomial with the leading coefficient equal to one, P(x)=xn+ } } } , that
minimizes the maximum of the modulus in the interval (&1, +1), with the
additional restriction that the polynomial P(x) has to be monotone. That
is, P(x) is either non-increasing or non-decreasing. Its largest and smallest
values are therefore equal in absolute value, but opposite in sign, so that
the maximum of its absolute value is equal to the magnitude of the integral

L= 1
2 |

+1

&1
P$(x) dx.

While mentioning that all zeros of the derivative P$(x) that lie within the
interval have to be of even order, and that there should be no zeros outside
of the interval, Chebyshev comes to the conclusion that the polynomial
P$(x) of degree n&1 has the form

P$(x)=n(x&1)* (x+1)*0 U2(x),

33THE THEORY OF BEST APPROXIMATION OF FUNCTIONS



where the numbers * and *0 can have values 0 or 1. Therefore, one obtains

L=
n
2 |

+1

&1
(x&1)* (x+1)*0 U2(x) dx.

It is now easy to minimize this integral by considering the multiple
(x&1)* (x+1)*0 as a weight. One only needs to distinguish between the
four possible cases of values of * and *0 , depending on the parity of n, and
on whether the polynomial P(x) is increasing or decreasing.

The polynomial U(x) is a scalar multiple of the Jacobi polynomial
J ((&*0 , *)

(n&1&*&*0)�2(x), which Chebyshev finds from the generating function
obtained earlier. It is not necessary to present the details and the exact
result of the computations. Let us only note that the additional require-
ment of monotonicity does not affect the deviation much. Without the
restriction it is exactly equal to 1�2n&1, while with the restriction it is
asymptotically equal, as n � �, to ?n�2n, that is, it only increases by a
factor of (?�2) n. This comparison, which is natural in present research, did
not escape Chebyshev. In his memoir, he gives, by the way, not an
asymptotic estimate of the result, but an exact estimate with an inequality.
In any case, these circumstances testify to the fact that, despite the exact
content of his work and his reputation, Chebyshev was not indifferent to
asymptotic questions.

7. APPLICATIONS OF THE THEORY OF BEST APPROXIMATION
BY CHEBYSHEV: CHEBYSHEV'S LATEST WORKS

Chebyshev's statements about the relationships between a mathematical
theory and its applications illustrate quite clearly not just the source of his
creativity, but also his scientific and philosophical positions. He says ``The
convergence of theory and practice gives the most fruitful results, and it is
not just the practice that gains from it. The sciences themselves are being
developed under its influence. It opens new research subjects, or new
aspects in subjects that have already been known for a long time... If a
theory gains much from a new application of an old method, or from its
new developments, then it receives even more by discovering new methods,
and in this case science finds a reliable advisor in practice.'' Without any
doubt, when Chebyshev wrote these words, he was thinking mainly about
the theory of best approximation created by him. In addition, even though
Chebyshev's works of the early period belonged, judging by their topics
and within the tradition of his great predecessors, to the abstract areas of
science, and even though he later made a sharp turn, as we have men-
tioned, towards practical applications, in the latest period, both tendencies
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went hand in hand, and they were united in some harmonic balance.
Furthermore, it is necessary to note that applications are understood by
Chebyshev in a broad and original sense. They are not limited to the area
of technical sciences, but are rather related to very different forms of
human activity, or serve the internal needs of mathematics itself (designing
tables, interpolation, quadratures, solving equations). They are being
evaluated critically from the viewpoint of the relationship between the
``means'' used and the ``goals'' achieved.

It is not quite true that Chebyshev's works reflect completely the family
of questions to which he had a chance to apply the methods of approxima-
tion that he developed and which he used with incomparable proficiency.
Rather, his works contain just a portion of such applications. Having made
this remark, let us now consider the applications that Chebyshev mentions
explicitly.

(i) Kinematics of mechanisms. As was already mentioned, this is the
point of origin for the theory of approximation of functions by polyno-
mials, or, generally speaking, by functions of various kinds that depend on
several parameters. This is his favorite area and it attracted his thought for
several decades. It is not the purpose of this article, however, to give
consideration to the numerous notes that are related to this subject.

(ii) Solving algebraic equations (separating roots). In the memoir
[4], there are about 10 theorems (6�11, 15�19) that are derived from the
basic propositions on best approximation. These theorems state that, under
certain conditions, the polynomial of interest has at least one zero in some
interval. The length of the interval depends, and on the one hand, on the
value of the polynomial at the center of the interval, on the other hand, on
specific assumptions on the coefficients or on the zeros of the polynomial.
For example, Theorem 10 states that if the polynomial f (x)=x2n+1+ } } }
+K does not contain any even powers of x, then it has at least one zero
in the interval |x|<2(|K |�2)1�(2n+1). Let us give a proof, assuming, of
course, that K{0. If the polynomial f (x) did not have any zeros in
the specified interval, then the same would be true for the polynomials
f (x)&2K and [ f (x)&K]2&K 2# f (x)[ f (x)&2K]. Since the latter
polynomial is negative at x=0, it would also be negative in the whole
interval |x|<2( |K |�2)1�(2n+1), so that f (x)&K would deviate from zero by
less than K. But this is impossible since it means that the polynomial
(1�(22n |K | )) f (2x( |K |�2)1�(2n+1))#x2n+1+ } } } would deviate from zero by
less than 1�22n on the interval |x|<1. Let us also formulate Theorem 9,
which uses a different assumption: if a polynomial of degree n with leading
coefficient equal to one, f (x)#xn+ } } } , has only real roots, then, for any
t, there is a real root in the interval |x&t|<4 n

- | f (t)|�4. Later, in his 1872
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memoir using a result on monotone polynomials, Chebyshev narrows the
interval, replacing it with the following: |x&t|< n

- | f (t)|�2(n&1)?.17

(iii) Interpolation (remainder estimate). To minimize the error in the
Lagrange interpolation formula, Chebyshev suggests taking the nodes of
the interpolation (say, in the interval (&1, +1)) to be the zeros of the
polynomial Tn(x)#cos n arc cos(x), since, for a given function f (x), the
remainder has the form R(x)= f (n+1)(!) Pn(x), where Pn(x)=>n

i=1 (x&xi),
and xi are the nodes. Therefore, with Rn(x)�Mn+1 max |Pn(x)|, where
Mn+1=max | f (n+1)(x)|, the choice Pn(x)=Tn(x) is the most profitable.
Here Chebyshev partly envisions the later result of Runge that says that,
as n � �, Chebyshev interpolation converges for any function that is
regular in the basic interval (while this is not true for Newton interpolation
with equally spaced nodes).

(iv) A rule for finding approximately distances on the surface of the
Earth.18 Let us quote it completely:

(1) take the differences between the two latitudes and the two longitudes and
express them in minutes; (2) double the difference of the latitudes; (3) out of these
two numbers, the difference of longitudes, and the doubled difference of latitudes,
multiply the smaller by 3, multiply the larger one by 7, and then add the two
products; (4) the result divided by 3 will give the desired distance in versts.

It is not difficult to guess that here one is talking about applying the
approximating formula of Poncelet - a2+b2

t:a+;b to the infinitesimal
formula

2stR - 2u2+cos2 u2v2,

where 2s is the length of the main arc connecting the two points, R is the
radius of the Earth, which is equal to 5971 versts, u is latitude, and 2u and
2v are the differences of the latitudes and longitudes, in radians. The
Poncelet parameter k is obviously taken to be 1. The rule was probably
obtained in the following way,

R - 2u2+cos2 u 2v2=R cos u�2v2+\ 2u
cos u+

2

tR cos u - 2v2+(22u)2

tR cos u(: min[2v, 2 2u]+; max[2v, 22u])

=
R?

180 } 60
cos u(: min[2V, 22U]+; max[2V, 2 2U])

=cos u(1.67 min[2V, 22U]+0.68 max[2V, 2 2U]),
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where 2U and 2V are the differences of latitudes and longitudes in
minutes. The coefficients 7

8 and 3
8 in the formulation of the rule indicate that

cos u was taken to be approximately 0.53, which corresponds to the
latitude of 58%.

(v) Approximate quadratures. The applications of best approxima-
tion to this particular question were the subject of Chebyshev's last two
works: ``On approximate expressions for the square root of a variable in
terms of simple fractions'' (1889) [11] and ``On polynomials that represent
the values of the simplest rational functions best when the argument is
bounded between two given limits'' (1892) [12]. Chebyshev writes: ``While
computing quadratures, it is often necessary to replace the functions that
present difficulty for integration by approximate expressions.'' In the first of
the two articles mentioned, the problem of the best relative approximation
to the expression 1�- x by a rational expression of the form A+�n

1 Bi �
(Ci+x) is being solved, and a special application to computing integrals of
the form � (U�- V) dx is given, in particular, for elliptic integrals

|
tg p&1x

- 1&*2 sin2 x
dx (0<p�1).

In the second article, an approximate equality is established for the interval
|x|�h

1
H&x

t
1

Tn(H�h)
}
Tn(x�h)&Tn(H�h)

x&H
(h<H ).

This means that, among all polynomials of degree n&1, the one on the
right gives the smallest relative error on the interval |x|�h. This allowed
Chebyshev to approximate the integrals of the form �+h

&h ( f (x)�(H&x)) dx
by linear combinations of integrals of the form �+h

&h xkf (x) dx.

(vi) Constructing geographic maps. If one needs to draw on a map
some piece of the Earth' surface with a given boundary, then there is a
choice among infinitely many projections that provide the infinitesimal
similarity and preservation of the scale in each point and in all directions.
These are the so-called conformal projections. However, as follows from
Gauss' Theorema egregium, among all conformal projections of a ball to a
plane, it is impossible to find a projection that would preserve the scale for
all points of the surface.

In a talk given on January 30 (18) of 1856 published under the title ``Sur
la construction des cartes ge� ographiques'' in the ``Notes of the Academy of
Sciences'' [3], Chebyshev posed the problem of finding a conformal projec-
tion for which the logarithm of the scale would vary within the tightest
possible bounds; that is, it should have the smallest possible deviation from
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some average value. Without a proof, he claimed that, if the specified con-
dition is satisfied, then the scale should be constant on the boundary of the
map (note that this last requirement can be satisfied by the Dirichlet
principle). Chebyshev's statement was proved much later by Academician
D. A. Grave.19

The problem is reduced to finding a function U harmonic in the given
domain (D) that deviates least from some given function ,. In the simplest
case, 2, does not change sign in the domain (D), where 2 is the Laplace
operator. That is, as one now says, the function , is subharmonic or super-
harmonic. In the cartographic problem of interest here, one has to deal
with a superharmonic function.

In the simplest case just mentioned, it turns out that the function U only
differs by an additive constant from some harmonic function U0 that
coincides with , on the boundary (so that U0<, in the interior of D)

U=U0+C.

As far as the constant C is concerned, it is easy to see that it equals

C= 1
2 max

(D)
(,&U0).

8. THE EXTREMAL PROBLEMS SOLVED BY E. I. ZOLOTAREV,
A. A. AND V. A. MARKOV, AND N. I. AKHIEZER

Already in Chebyshev's time, research in the theory of best approximation
of functions was continued by other authors��his students.

For example, Zolotarev in his 1868 dissertation [78] considered the
problem of finding a polynomial of the form

Pn(x)=xn+_1xn&1+ p2xn&2+ } } } + pn (_1 is given),

that deviates least from zero on some given interval. It turned out that the
solution could be expressed, generally speaking, in terms of elliptic func-
tions, just as the solution of Chebyshev's simplest problem could be
expressed in terms of trigonometric functions. A different problem, to
minimize the polynomial of the form

Pn(x)=xn+ p1xn&1+ } } } + pn
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on some given interval, with the additional condition

Pn(H )=M (H>1),

reduces to the first problem.
In 1884, A. A. Markov generalized Chebyshev's ``second case'' [56] to

the case of a weight of the form

*(x)=
1

- f (x)
,

where f (x) is a given polynomial of even degree.
In 1889, the same author [57] answered the question posed by

Mendeleev in his work ``An Investigation of Liquid Substances by Their
Specific Weight'' (Sect. 86): Assuming that the maximum of the absolute
value of some polynomial Pn(x) of degree n on the interval |x|�1 is equal
to 1, find the upper bound for the maximum of the modulus of its
derivative in the same interval. Markov proved that this upper bound is
equal to n2. As is easy to check, it is attained by the Chebyshev polynomial
at the points \1. In particular, this implies that the polynomial Tn(x) is
a solution to the following problem: Among all polynomials of the form
Pn(x)= p0xn+ } } } + pn with absolute value not exceeding 1 in the interval
|x|�1, find the one that maximizes the quantity P$n(1)=np0+(n&1) p1+
} } } + pn&1 . This problem is equivalent to the following one. Among all
polynomials Pn(x)= p0xn+ } } } + pn with coefficients satisfying the linear
condition np0+(n&1) p1+ } } } + pn&1=1, find the one that least deviates
from zero.

In 1892, V. A. Markov, the younger brother of A. A. Markov, formulated
[60] a general problem of finding a polynomial Pn(x) of degree n that
deviates least from zero on the interval |x|�1 under a given linear
condition on the coefficients

:0 p0+:1p1+ } } } +:npn=1,

which is equivalent to computing the maximum of |:0p0+ } } } +:npn |
under the condition max |x| �1 |Pn(x)�1. In particular, he found the upper
bounds |P (n&k)

n (0)�(n&k)!|=| pk| under this condition. In other words, he
found the polynomials of degree n that deviate least from zero when the
coefficient of an arbitrary power of x is given. Also, in connection with the
problem of least deviation under the condition P (k)

n (!)=1 (where ! is a
given value of x), V. A. Markov found the exact upper bounds on the
expression max |x|�1 |P (k)

n (x)| under the assumption max |x|�1 |Pn(x)|=1.
The problem of finding a polynomial of degree n that deviates least from

zero under two linear conditions on the coefficients (a generalization of the
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Zolotarev problem: p0=1, p1=_) was studied later by Psheborsky [62]
and other authors.

More recently, the research on best approximation in the classical direc-
tion started by Chebyshev and Zolotarev was successfully continued by
Akhiezer, who obtained a series of new exact results in his major 1928
work [15]. Of these, we shall just mention a few:

1. A solution to the Zolotarev problem of minimizing a polynomial
with two given coefficients

Pn(x)=xn+_1xn&1+ p2xn&2+ } } } + pn

with an arbitrary Chebyshev weight *(x)=1�A(x), where A(x) is a
polynomial.

2. A solution to the problem of minimizing a polynomial

Pn(x)=xn+_1xn&1+_2xn&2+ p3xn&3+ } } } + pn

with three given coefficients under a constant weight.

3. A solution of the fundamental problem of minimizing a polynomial
with one given coefficient

Pn(x)=xn+ p1xn&1+ } } } + pn

for the case of two intervals &1�x�:; ;�x�1 (&1<:<;<+1).

Out of further results of Akhiezer we shall mention the following:

1. A solution to the problem of minimizing a polynomial Pn(x)
on two intervals under additional conditions of the form Pn(xi)= yi

(i=1, 2, ..., l ) [17].

2. A significant improvement of the method used by Chebyshev for
approximating a polynomial by a rational function with variable coef-
ficients in both the numerator and denominator (Chebyshev's ``third case'').
Without using continued fractions, Akhiezer obtains the least deviation as
a root of an algebraic equation, while the coefficients are determined from
a system of linear equations [16].

As far as the methodology is concerned, Akhiezer widely uses the elliptic
functions, as does Zolotarev, which reflects the nature of the problems
themselves. On the other hand, the proofs are based on the theory of func-
tions of complex variables, including some of the newest results in this area.

As an example of this kind of proof, let us present a solution to Chebyshev's
main problem (``the first case'').
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According to the necessary conditions, the minimizing polynomial

y#Pn(x)=xn+ p1 xn&1+ } } } + pn

takes on its extremal values \L exactly n+1 times in the interval
&1�x� +1. Therefore, the polynomial y2&L2 of degree 2n has 2n zeros
in this interval, counting multiplicity. Let us consider the behavior of the
function of a complex variable

'=
y+- y2&L2

L

in the domain (D) obtained by removing the interval (&1, +1) from the
extended complex plane (here the sign of the radical is chosen according to
the condition '=� when y=�). We then have

y=
L
2 \'+

1
'+ .

The function ' of the variable x is regular in the domain (D), since
y2&L2{0. It does not have any zeros in (D) and it has a single pole of
order n at x=�. Its values on the boundary of the domain have absolute
value 1, since it follows from | y|�L that

|'|= } yL+�\y
L+

2

&1}= } yL+i �1&\y
L+

2

}=1.

Set

!=x+- x2&1, x=
1
2 \!+

1
!+

(here the sign of the radical is taken according to the condition !=�
when x=�). The domain (D) in the x-plane is mapped, under these
relations, into the exterior of the disk |!|�1, and, if one considers ' as a
function of !, then it turns out that the function is regular when |!|>1, has
a pole of order n at the point !=�, and |'|=1 on the boundary |!|=1.
This implies

'=c!&n,

where c is a constant with modulus one. If one replaces ! by 1
! , the value

of x and, therefore, the value of y do not change, which implies that
c=\1. Thus,

y=\
L
2

(!n+!&n)=\
L
2

[(x+- 1&x2)n+(x&- 1&x2)n]=\LTn(x),
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while the comparison of the leading coefficients shows that the sign is ``+''
and that

L=
1

2n&1 .

9. THE CONNECTION BETWEEN BEST APPROXIMATION
AND DIFFERENTIAL PROPERTIES OF A FUNCTION.

THE WORK OF S. N. BERNSTEIN

A new content was given to the theory of best approximation of
functions in the first decade of the current century.

It originated from a proposition established in 1885 by Weierstrass, the
head of the Berlin school of mathematics. For any function f (x) continuous
on a given interval a�x�b and for any =>0, there is a polynomial P(x)
such that

max
a�x�b

|P(x)& f (x)|�=. (11)

By considering a sequence of values [=n] converging to zero, we
conclude that the function f (x) is the limit of a uniformly converging
sequence of polynomials. Since Weierstrass also proved that the limit of a
uniformly converging sequence of continuous functions is also a continuous
function, the property established by Weierstrass is exactly equivalent to
the continuity of the function in the given interval. In other words, ``the set
of polynomials is everywhere dense in the set C,'' or ``the system of power
functions 1, x, x2, ..., xn, ... is fundamental.'' g

The discovery of Weierstrass, despite its deep and fundamental value,
was not immediately appreciated and did not invoke immediate responses.
This can be explained, on one hand, by the fact that it did not seem
impressive since there were some vague ideas about representing an
``arbitrary'' function by an analytic formula that were prepared by Fourier,
Dirichlet, and Riemann, and, on the other hand, since the Weierstrass
theorem was the first stone in the fundament of functional analysis and a
solid basis for further development of this new direction was not yet in
place.

This all changed soon after the appearance of Lebesgue's works and
Borel's monograph ``Lec� ons sur les fonctions des variables re� elle'' [41].
A question arose: what is the dependence between the number = in the
inequality (11), that is, between the ``deviation'' of the polynomial P(x)
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from the function f (x) and the degree of P(x), and it was very soon
correctly pointed out that the answer to this question depends on the
differential properties of the function f (x). The lower bound on the num-
bers = in the Eq. (11) for a given degree of the polynomial P(x) is exactly
the least deviation of the polynomial P(x) from the function f (x) con-
sidered by Chebyshev. Upon denoting this deviation (e� cart) by En( f ), we
see that the sequence of numbers En( f ) is non-increasing, and by the
Weierstrass theorem,

lim
n � �

En( f )=0.

While Chebyshev was interested in the exact computation of the number
En( f ) for a given n, and also in constructing the corresponding uniquely
defined polynomial P(x), it was important from the new viewpoint of func-
tion theory to determine the rate at which the numbers En( f ) decrease.
Therefore, the asymptotic side of the best approximation problem is now
taking precedence.

It is not surprising that initial attention was paid to continuous functions
with the simplest kinds of singularities, namely the functions whose graphs
have a corner (for example, f (x)=|x|, at x=0). Further along in the
queue were more general classes of functions, namely those that are not
differentiable on a given interval, such as f (x)=|x| s (s>0). In 1903, the
Belgian Academy of Sciences, following a suggestion of its member de la
Valle� e-Poussin, posed the following research challenge: ``To present new
investigations in the area of expanding real or analytic functions into series
of polynomials.'' De la Valle� e-Poussin posed the following precise question:
``Is it possible to approximate a polygonal line, or, which is the same, |x|,
in the interval [&1, 1] by a polynomial of degree n at a rate higher than
1
n?'' In other words, is it possible to replace the expression En( |x| )=O( 1

n)
by a more precise En( |x| )=o( 1

n)?
Research in this direction was started by de la Valle� e-Poussin himself. In

a work published in 1910 [74], he demonstrates a trick that allows him to
get a lower bound on En( |x| ), whereas any approximating polynomial,
obviously, gives an upper bound, and he uses the trick to obtain the
inequality

En( |x| )>
k

n lg3n
(k>0).

Approximation of |x|1�2 is also considered there.
One year later, the Belgian Academy of Sciences was presented a work

that completely answered the question posed. In his account, de la Valle� e-
Poussin said that this work is ``the most valuable contribution to the area

43THE THEORY OF BEST APPROXIMATION OF FUNCTIONS



of expanding functions into polynomial series, judging by both the number
and the importance of the results it contains.'' This was the work [19],
which later became the Ph.D. dissertation of Bernstein, who is at present
an academician.

Let us briefly mention the most significant results of this work.

(1) The question posed by de la Valle� e-Poussin was answered
negatively: there are positive numbers A and B such that

A
n

<En( |x| )<
B
n

.

(2) If En( f )=O(1�n p+=), then the function f (x) has a continuous
derivative of order p.

(3) If En( f )=O(*n), where 0<*<1, then the function f (x) is
regular not only on the basic interval [&1, +1], but also in the ellipse
with the foci \1 and with the sum of the semi-axis equal to 1�*. The
converse is also true. If a function f (x) is regular in the closed ellipse with
the foci \1 and with the sum of the semi-axis equal to 1�*, then

En( f )=O(*n).

(4) As a tool in his proofs, Bernstein uses the following theorem, of
great independent interest: If Pn(x) is a polynomial of degree n, then the
inequality

max
&1�x� +1

|Pn(x)|�1

implies the inequality

|P$n(x)|�
n

- 1&x2
(&1<x<+1).

(5) An upper bound on En( f ) is established as a function of the
upper bound on | f (n+1)(x)| in a given interval.

(6) A regular method for estimating En( f ) is specified (a parametric
method using analytic continuation).

(7) A criterion is given for the fundamentality of the system

x:1, x:2, ..., x:n, ... (0�:1<:2< } } } <:n< } } } ).20
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While the connection between differential properties of a function and
the order of best approximation by polynomials of degree n was studied in
France, it also gained attention, in a more general setting, in Go� ttingen.
Here, largely due to E. Landau, another challenge problem of the same type
was announced. Already in 1911, the American mathematician D. Jackson
[51] presented a dissertation, in which he proved a series of theorems that
are converses to Bernstein's theorems. From the positive assumptions on
the differential properties of a function being approximated, conclusions
are drawn about the rate En( f ) of best approximation.21

By 1912, a rather complete theory was formed based on the results of
Bernstein and Jackson that became the main part of the report presented by
Bernstein at the International Mathematics Congress in Cambridge [21].

About the same time, Bernstein [20] studied Chebyshev's ``second case''
(weighted approximation), and found the exact value of En(1�(x&a)),
where |a|>1, and the asymptotic value of En(1�(x&a)k). This gave the
asymptotic value of En( f ) for an arbitrary function f (x) regular in the
interval &1�x�+1, under the following condition: the smallest ellipse
with foci \1 at which the function is not regular, but is still regular in the
interior of the ellipse, contains only one algebraic singularity. If there are
many such singularities, the picture becomes more complicated.

All the wonderful results obtained during those few years led to the idea
that the rate of decrease of En( f ) could be taken as a basis for a unified
classification of functions of real and complex variables. Thoughts to that
effect were reflected in Bernstein's memoir ``Sur la definition et les
proprie� te� s des fonctions analytiques d'une variable re� elle'' [22] published
in 1914 in Mathematische Annalen. By considering algebraic polynomials as
the major elementary basis for the theory of functions, Bernstein founded
a new direction in the theory of functions, which he later named ``constructive.''

There is no doubt that World War I had a negative influence on the
further development of approximation theory. But already in 1919, there
appeared a new monograph by de la Valle� e-Poussin ``Lec� ons sur
l'approximation des fonctions d'une variable re� elle'' [75], which syn-
thesized in a systematic way the many facts obtained, starting with
Weierstrass, in functional approximation theory. Note one property of this
book. It is the first book to precisely pose and study (in connection with
each other) two analogous problems: approximating a function given
on an interval of the real line by an algebraic polynomial of degree n
and approximating a periodic function with period 2? by ``trigonometric
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polynomials'' of degree n (de la Valle� e-Poussin still called them ``trigonometric
sums''). The trigonometric polynomials, as we have seen, can be first found,
in some specific problems, in Chebyshev's work of 1881.

Another major contribution to approximation theory was a French
monograph by Bernstein, ``Lec� ons sur les proprie� te� s extre� males et la
meilleure approximation des fonctions analytiques d'une variable re� elle''
[27], published a few years later, which was based on lectures given at the
Sorbonne in 1923. In a revised version, it was published much later in
Russian under the title ``Extremal Properties of Polynomials'' [35]. It
contains, on one hand, a large number of results by Chebyshev, by the
Markov brothers, and by the author himself. On the other hand, it con-
tains a large amount of new material, which is in part discussed below. For
now, we note the following particular questions: (1) the asymptotic value
of the least deviation from zero of a polynomial of degree n with an
arbitrary number of given highest coefficients, and an arbitrary weight; (2)
finding the next terms in the asymptotic expansion for the least deviation
from zero of elementary rational functions; (3) a deep investigation of best
approximation of functions with an essential singularity.

Very recently, Bernstein returned to the problem of best approximation
of the simplest functions that are not infinitely differentiable, |x| s (s>0),
and proved in [37] an asymptotic equality, for n � �, of the form

En( |x| s)t
+(s)
ns ,

where +(s) is a continuous function of the variable s that naturally takes
the value zero at even integers s. He also established in [38] a more
general relation,

En( |x&c| s)t(1&c2)s�2 +(s)
ns (&1<c<+1),

and found a method for computing En( f ) asymptotically for an arbitrary
function f (x) that has only a finite number of ``corners'' on the basic inter-
val. Thus, the case of ``algebraic�logarithmic singularities'' in the basic
interval was considered as thoroughly as the case when the singularities of
this kind are located outside the interval.

10. FURTHER RESULTS DEALING WITH BEST APPROXIMATION
OF FUNCTIONS

In this section, we will discuss some of the newest developments that are
more or less close to the major line drawn by Chebyshev but can, strictly

46 V. L. GONCHAROV



speaking, at times lie outside of the circle of his ideas, but that nevertheless
carry the mark of Chebyshev's style. It is also very important to note that
Chebyshev's ideas are penetrating, at an increasing rate, areas such as the
theory of functions and functional analysis that were initially foreign to
them.

In 1928, Bernstein [30] generalized the notion of an increasing function
by introducing multiply monotone functions. To be precise, a function is
called multiply monotone of order h+1 in a given interval if all of its
derivatives up to (and including) those of order h+1 are non-negative on
the given interval. Already for the most general multiply monotone func-
tions f (x), some extremal problems arise. In particular, Bernstein found
bounds for f (k)(x0), where x0 is an internal point of the interval, while the
values of f (x) at the end points of the interval are given. We shall not dis-
cuss here the subject of absolutely and regularly monotone functions,
which opened a new chapter in the modern theory of functions of a real
variable. We shall only mention that Bernstein formulated the main
problems of Chebyshev (find a polynomial that deviates least from zero
when the leading coefficient is given) and Markov (find a polynomial that
deviates least from zero when the derivative at some point is given) in the
case of multiply monotone polynomials. As we have seen, Chebyshev had
considered the first of these two problems in the case of standard
monotone polynomials, and the solution turned out to be connected
to Jacobi polynomials. The latter is also true in the more general case
of multiply monotone polynomials. Later, a whole series of various ver-
sions of the classical problems were considered by Bernstein' students��
Ya. L. Geronimus and V. F. Brzhechka��for the case of monotone and
multiply monotone polynomials.

A new development was given to classical problems in the spaces L(1)

and L(1)(*). Chebyshev himself considered the integral of the absolute value
of a function in the memoir ``On Interpolation in the Case of a Large
Number of Data Points Obtained from an Observation'' [5]. Furthermore,
in 1873, Korkin and Zolotarev (inspired by Chebyshev?) solved the
problem of finding a polynomial of given degree with a given leading coef-
ficient that minimizes the integral of the absolute value. It turned out that
the polynomial of interest is, up to a scalar multiple, equal to

Un(x)=
sin(n+1) arc cos x

- 1&x2
.

The next more general result was formulated in 1927 by Bernstein [28],
who found that, under rather general assumptions, the polynomial that
deviates least from a given continuous function in the sense of the space
L(1) is the interpolation polynomial with the nodes being the zeros of the
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polynomial Un+1(x). From this, by the way, it follows immediately that the
polynomial Pn(x) with a given leading coefficient that minimizes the total
variation, that is, the integral

|
+1

&1
|P$n(x)| dx,

again, coincides, up to a scalar multiple, with Chebyshev's polynomial
Tn(x). In 1934 and later, research in this direction was continued by
Geronimus, Brzhechka, and Akhiezer.

The application of Chebyshev's ideas to generalized polynomials as well
as to function spaces of more general type began with a paper written in
1907 by the American mathematician Young [77]. In 1913, Polya proved
[63] that the polynomial of degree n deviating least from a given function
in the space L(2k) (k being an integer) tends to the polynomial deviating
least from that function in the Chebyshev space C as k � �. He remarked
that the idea of power-norms is due to Runge (but its roots are even
deeper; recall the so-called ``Gra� ffe method''). In the 20s, Jackson took up
approximation theory in L(s)-spaces and showed how best approximation
depends on analytic and differential properties of the function.22

It is more or less clear that finding exact solutions to problems of
Chebyshev type cannot be guaranteed in arbitrary L(s)-spaces. The question
then becomes one of existence, of estimating the error of approximation, or
of developing algorithms that converge. Remez, in particular, worked in
that last direction.

Kolmogorov [54] posed the question of the best (in the sense of
Chebyshev) choice of the basis of ``generalized polynomials'' in an arbitrary
metric space for a class of functions to be approximated. He solved the
problem for a particular class of functions in the space L(2).

It often happened that complex analysis elucidated phenomena taking
place on the real line. Approximation theory was no exception. In 1919,
Faber [43] introduced the notion of the Chebyshev polynomial

Tn(z)=zn+ p1zn&1+ } } } + pn (12)

that deviates least from zero on a given closed simply connected subset M
of the complex plane. He established a connection between the polynomial
Tn(z) and a conformal mapping of the complement of M onto the exterior
of a certain disk (this question is related to the Robin constant from
potential theory), investigated the location of the roots of the polynomial
Tn(z), and found these polynomials explicitly for some specific sets M. For
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example, if M is an ellipse with foci \1, then the corresponding polyno-
mial (12) coincides with the usual Chebyshev polynomial (1�2n&1) cos n
arc cos z. But the most remarkable result��the solution to the Markov
problem in the complex domain, i.e., finding a polynomial that deviates
least from zero and has a prescribed value of its derivative at a given
point��was obtained by Szego� [70]. This generalization clarifies that fact
that the inequality max&1�x�1 |Pn(x)|�1 implies a bound of order n for
|P$n(x)| at all interior points of the interval [&1, +1] as well as a bound
of order n2 at the end points (A. A. Markov's inequality). By considering
domains enclosed by finitely many analytic arcs, Szego� establishes that the
upper bound on |P$(z0)|, where z0 # M, depends on the boundary of M
and the location of z0 . For points z0 in the interior of M, Cauchy's integral
formula yields a bound of the form O(1)�$2, with $ the distance from z0 to
the boundary of M. If z0 belongs to the boundary of M and lies on only
one of the analytic arcs (so that the boundary of M has a tangent line at
that point), then the bound is of order O(n). Finally, if z0 is the endpoint
of two of the analytic arcs and the angle between their tangent lines (exter-
nal with respect to M ) equals :?, then the bound is of order O(n:). For the
end points of the interval [&1, +1], the value of : is 2, which explains the
increase in the order of the bound.

The systematic transfer of the methods of uniform Chebyshev approxi-
mation to the complex domain was begun in 1930 and undertaken by
Jackson and Walsh. The rich material on that topic is collected in the book
of the latter author ``Interpolation and Approximation by Rational
Functions in the Complex Domain'' [76] published in 1935.

Let us now turn to a question similar to the above-mentioned problem
of V. A. Markov, namely to a theorem due to Bernstein that recently
attracted much attention. In its most primitive formulation, the theorem
deals with trigonometric polynomials of degree n and can be stated as
follows. If Mn is the maximum of the absolute value of a polynomial and M$n
is the maximum of the absolute value of its derivative, then

M$n�nMn . (13)

Applying this theorem to an even polynomial (containing only cosine
terms) in a variable % and making the change of variables cos %=x, one
obtains an inequality for an algebraic polynomial of degree n:

M$n�
nMn

- 1&x2
. (14)

Conversely, the inequality (14) is easily seen to imply the inequality (13).
Of the many proofs of Bernstein's theorem, M. Riesz's proof [66] stands out
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as the simplest and most elegant. As was shown by Bernstein [31], the
inequality (13) is preserved in the asymptotic form for weighted maxima. If
Mn=max&1�x�1 *(x) |Pn(x)|, M$n=max&1�x�1 *(x) |P$n(x)|, then we
obtain

M$n�(1+=n) nMn ,

with =n depending only on n and tending to 0 as n � �.
A. A. Markov's inequality generalizes to the setting of the space L(s), viz.,

M$n�A(s) n2Mn ,

where

Mn={|
1

&1
|Pn(x)| s dx=

1�s

, M$n={|
1

&1
|P$n(x)| s dx=

1�s

,

and A(s) depends only on s [49].
The complex analog of Bernstein's theorem is derived by him in [27]

and has the form

M$n�nMn ,

where

Mn=max
|z|�1

|Pn(z)|, M$n=max
|z|�1

|P$n(z)|.

Van der Corput and Schaake [73] found an analog of inequality (13)
for binary forms of a given degree. If f (x, y) is a form of degree n, then the
inequality (13) holds with

Mn=max
| f (x, y)|

(x2+ y2)n�2 , M$n=max
- |�f��x|2+|�f��y|2

(x2+ y2) (n&1)�2 .

They also obtained strengthened versions of the inequality (13). For example,
if Mn denotes the maximum of the absolute value of a trigonometric
polynomial Sn(x) of degree n, then, for all x,

|S$n(x)|�n - M 2
n&S 2

n(x).
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Bernstein obtained a formal generalization of this original theorem by
finding an upper bound of the ratio M$n�Mn , where

Mn=max
x } :

n

m=0

(am cos mx+Bm sin mx) } ,
M$n=max

x } :
n

m=0

*n&m(am cos mx+Bm sin mx) } ,
under some restriction on the positive constants *i [34]. Sokolov [67]
considered the case *n&m=m: (m=0, 1, ..., n) in detail.

The following far-reaching generalization of Bernstein's inequality was
obtained by himself in 1923 [23]. Let f (x)=��

0 (an �n!) xn be an entire
function such that lim supn � �

n
- |an | is finite and equal to k. If the

supremum M of | f (x)| over the reals is finite, then the same is true of the
supremum M$ of | f $(x)| over the real axis, and M$�kM.

Finally, note that trigonometric functions are eigenfunctions of a system
of differential equations of a simple kind. This observation led E. Carlson,
a student of Jackson, to a generalization of Bernstein's inequality in the
case of a more general system of differential Eqs. [42]. Then

M$n�CnMn ,

where

Mn=max |Sn(x)|, M$n=max |S$n(x)|,

Sn(x) is a sum of the form ��
0 akvk(x), ak are arbitrary coefficients,

v1 , ..., vk are eigenfunctions corresponding to the eigenvalues of the system
of differential equations listed in ascending order, and C is a constant
depending neither on n nor on the coefficients ak .

There are several strengthenings of Markov's inequality M$n�n2Mn

under various additional assumptions.23

The most general problem of A. A. Markov type for trigonometric
polynomials,

Sn(x)=a0+ :
n

m=1

(am cos mx+bm sin mx),

is to minimize the maximum of |Sn(x)|, given a linear dependence among
the coefficients of Sn .
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A similar problem, though of another type, was considered by Feje� r
[44]. Given a linear dependence among the coefficients of a non-negative
trigonometric polynomial Sn(x), minimize its last coefficient

an=|
?

&?
Sn(x) dx.

Feje� r found a solution to this problem by representing a non-negative
trigonometric polynomial as the square of the absolute value of an
algebraic polynomial in the variable z=ei%. Bernstein [32] found the solu-
tion without passing to the complex domain by applying the classical
methods of Chebyshev, which turned out to be quite effective in this case.

Bernstein's works [33, 36], which appeared around 1930, are devoted to
orthogonal systems of polynomials defined by a weight of the form

*(x)=t(x) q(x),

where q(x)=1�- 1&x2 and t(x) is a function bounded below and above
by positive constants. These works must be mentioned in this survey, for
they clarify the relationship between approximations in different function
spaces. The starting point is the observation that the norm &Pn(x)& of a
polynomial

Pn(x)=xn+ p1xn&1+ } } } + pn (15)

is minimized by the same Chebyshev polynomial Pn(x)=Tn(x)�2n&1 in
different spaces, viz., in the spaces C and L(s)(q) for s�1.24 In addition, if
the norms of f (x) in the spaces C, C(*), L(s), L(s)(*) are denoted by

N( f ), N(*, f ), N (s)( f ), N (s)(*, f ),

respectively, then the following equality holds for Pn(x)=Tn(x)�2n&1:

N (s)(*, Pn)= s�1 (1�2) 1((1+s)�s)
1(1+s�2)

N(Pn). (16)

Bernstein generalizes this result as follows. The polynomial Pn(x) of the
form (15) whose L2(tq)-norm is minimal (i.e., a polynomial of degree n that
belongs to the orthogonal system defined by the weight t(x) q(x)) also
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asymptotically minimizes the norm in the spaces L(s)(tq) for s>2 as well as
in the space C(t), and the asymptotic relation

N (s)(tq, Pn)t s�1 (1�2) 1((1+s)�s)
1(1+s�2)

N(t, Pn) (17)

holds, at least if the function has some differentiability properties similar to
that of Dini and Lipschitz.

An analogous problem��to investigate properties of orthogonal polyno-
mial systems in the complex domain��was successfully solved by Szego�
[69, 71].

Bernstein has expanded the circle of problems of Chebyshev type in one
more way. Chebyshev and his immediate successors had always taken
bounded intervals on the real axis to be the domains of functions. But, after
suitable changes in the setup of the problem, one can consider best
approximations on unbounded intervals (the whole real axis or its
semi-axis) as well.25

A similar opportunity exists if one considers a weight that tends to zero
faster than the function to be approximated and the approximating polyno-
mials as the argument tends to infinity. For example, in the L(2)-space with
weight e&x on the interval (0, �), this gives approximations by Laguerre
polynomials. On the interval (&�, +�) with weight e&x2

, on obtains
approximations by Hermite polynomials. It is legitimate to ask a similar
question for the Chebyshev space as well, requiring the minimization of the
expression

max[*(x) | f (x)&Pn(x)|]

on an unbounded interval, given that *(x) decays sufficiently fast. Another
option, which was also explored by Chebyshev, is to consider approxima-
tion by rational functions on an unbounded interval [26, 27].

It is not easy to give an exhaustive list of problems that have arisen
during almost a century in connections with the best approximation
problems of Chebyshev. To complete our survey, we must mention two
more directions of research reflected in the works of Bernstein.

1. The inverse problem of best approximation. Given a non-increasing
sequence of positive numbers converging to zero,

a0�a1�a2� } } } �an� } } } , lim
n � �

an=0,
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construct a function f (x) defined on the basic interval that satisfies the
equalities [39]

En( f )=an (n=0, 1, 2, ...).

2. The theory of quasi-analytic functions. We already pointed out
that a classification of functions of a real variable is possible on the basis
of best approximations. In particular, one can single out the classes of so-
called quasi-analytic functions defined by the property that every function
in each class is determined uniquely by its values on an arbitrarily small
interval. The simplest of the quasi-analytic classes is that of analytic
functions. It is characterized by the inequality

lim sup
n � �

n
- En( f )<1.

But, as was shown by Bernstein already in 1914, the much larger class of
functions f (x) satisfying the inequality

lim inf
n � �

n
- En( f )<1

turns out to be also quasi-analytic. It contains even non-differentiable func-
tions. In the beginning of the 1920's, Carleman and Denjoy defined another
class of quasi-analytic functions by the requirement that functions f in the
class be infinitely differentiable and that the series

:
n

1
n

- Mn

,

where Mn=max | f (n)(x)|, diverge.
As was shown later by Bernstein [24, 25], this class can be characterized

in terms of best approximations, namely, by the condition

:
1

maxp�1 p n
- Ep( f )

=�.
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